Exponentiability in categories of lax algebras

نویسندگان

  • Maria Manuel Clementino
  • Dirk Hofmann
  • Walter Tholen
چکیده

For a complete cartesian-closed category V with coproducts, and for any pointed endofunctor T of the category of sets satisfying a suitable Beck-Chevalley-type condition, it is shown that the category of lax reflexive (T,V)-algebras is a quasitopos. This result encompasses many known and new examples of quasitopoi. Mathematics Subject Classification: 18C20, 18D15, 18A05, 18B30, 18B35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPONENTIABILITY IN CATEGORIES OF LAX ALGEBRAS Dedicated to Nico Pumplün on the occasion of his seventieth birthday

For a complete cartesian-closed category V with coproducts, and for any pointed endofunctor T of the category of sets satisfying a suitable Beck-Chevalley-type condition, it is shown that the category of lax reflexive (T,V)-algebras is a quasitopos. This result encompasses many known and new examples of quasitopoi.

متن کامل

On lifting of biadjoints and lax algebras

Given a pseudomonad $mathcal{T} $ on a $2$-category $mathfrak{B} $, if a right biadjoint $mathfrak{A}tomathfrak{B} $ has a lifting to the pseudoalgebras $mathfrak{A}tomathsf{Ps}textrm{-}mathcal{T}textrm{-}mathsf{Alg} $ then this lifting is also right biadjoint provided that $mathfrak{A} $ has codescent objects. In this paper, we give  general results on lifting of biadjoints. As a consequence, ...

متن کامل

Exponentiability in Lax Slices of Top

We consider exponentiable objects in lax slices of Top with respect to the specialization order (and its opposite) on a base space B. We begin by showing that the lax slice over B has binary products which are preserved by the forgetful functor to Top if and only if B is a meet (respective, join) semilattice in Top, and go on to characterize exponentiability over a complete Alexandrov space B.

متن کامل

Exponentiable Functors Between Quantaloid-Enriched Categories

Exponentiable functors between quantaloid-enriched categories are characterized in elementary terms. The proof goes as follows: the elementary conditions on a given functor translate into existence statements for certain adjoints that obey some lax commutativity; this, in turn, is precisely what is needed to prove the existence of partial products with that functor; so that the functor’s expone...

متن کامل

Exponentiability via Double Categories

For a small category B and a double category D, let LaxN (B,D) denote the category whose objects are vertical normal lax functors B //D and morphisms are horizontal lax transformations. It is well known that LaxN (B,Cat) ≃ Cat/B, where Cat is the double category of small categories, functors, and profunctors. In [19], we generalized this equivalence to certain double categories, in the case whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003